Problem 6E,5

Suppose

$$X = \{0\} \bigcup \bigcup_{k=1}^{\infty} \{\frac{1}{k}\}$$

and d(x, y) = |x - y|.

• Show that (X, d) is a Banach space.

• Each set of the form $\{x\}$ is closed subset of \mathbb{R} that has a nonempty interior as a subset of \mathbb{R} . Clearly X is a countably union of such sets. Explain why this does not violates the Baire's theorem.

Proof. • This is easy to check.

Note that each set of the form {x} is closed subset of ℝ and also closed subset of X. But if x = 1/k, k > 0, as a subset of X, it has x as interior point.

Problem 6E,8

Suppose (X, d) is a complete metric space and G_1, G_2, \ldots is a sequence of open dense subsets of X. Prove that $\bigcap_{k=1}^{\infty} G_k$ is dense subset of X.

Proof. Let U be a open subset of X and we need to show that $\bigcap_{k=1}^{\infty} G_k \cap U$ is nonempty. Since G_1 is open dense, we can find $\overline{B}(f_1, r_1) \subset G_1 \cap U, r_1 \in (0, 1)$. Now we can follow the proof of 6.76 (b) to find $f \in \bigcap_{k=1}^{\infty} G_k$, which shows that $\bigcap_{k=1}^{\infty} G_k \cap U$ is nonempty. \Box

Problem 6E,9

Prove that there dose not exists infinite-dimensional Banach space with a countable basis.

Proof. Otherwise, let B be a Banach space with countable basis b_1, b_2, \ldots Set

$$B_n = \{ b \in B | b \text{ can be written as } \sum_{k=1}^n c_k b_k, |c_k| \le n \}.$$

Then B_n is closed subset of B and $B = \bigcup_{n=1}^{\infty} B_n$. Then we know that there exists some n_0 such that $B(f,r) \subset B_{n_0}$ for some $f \in B, r > 0$. Thus B(0,r) lies in some finite dimensional subspace and so is B, which is an obviously contradiction. \Box

Problem 6E,16

Suppose V is a Banach space with norm $\|.\|$ and $\phi: V \to F$ be a linear functional. Define another norm $\|.\|_{\phi}$ on V by

$$|f||_{\phi} = ||f|| + |\phi(f)|.$$

Prove that if V is a Banach space with norm $\|.\|_{\phi}$, then ϕ is continuous functional on V with the original norm.

Proof. Consider the map $I: (V, \|.\|_{\phi}) \to (V, \|.\|)$ by sending f to f. This is a one-one map between Banach space so by 6.83 this map has a bounded inverse. Then there exists some constant C > 1 such that for any $f \in V$,

$$\|f\|_{\phi} \le C\|f\|.$$

This shows ϕ is continuous functional on V with the original norm. \Box

Problem 7A,5 Suppose (X, S, μ) is measure space and 1 . Show the equality holds inHolder inequality if and only if there exist nonnegative numbers a, b, not both 0, such that for almost every x, 0

$$||f(x)||^p = b|h(x)|^{p'}.$$

Proof. The "if" part is obviouly. If the equality holds, we only need to consider the special case $||f||_p = ||h||_{p'} = 1$. Note that the equality case for Young's inequality in 7.8 is $a^p = b^{p'}$. From the proof of 7.9, we know that for almost every x,

$$|f(x)|^p = |h(x)|^{p'}.$$

The general case follows similarly. \square

Problem 7A,7 Suppose (X, S, μ) is measure space and $f, h: X \to F$ are measurable function. Prove that if for positive $p, q, r, \frac{1}{p} + \frac{1}{q} = \frac{1}{r}$, then $||fh||_r \le ||f||_p ||h||_q$

Proof. Note that $\frac{r}{p} + \frac{r}{q} = 1$ thus $\frac{p}{r}, \frac{q}{r}$ is conjugate. Then apply the Holder inequality to function f^r, h^r gives the result.

Problem 7A,11 Show that $\bigcap_{p>1} l^p \neq l^1$.

Proof. Note that $l^1 \subset \bigcap_{p>1} l^p$. But conversely, look at $a = (\frac{1}{k})_{k=1}^{\infty}$. Then $a \in \bigcap_{p>1} l^p - l^1$.

Problem 7A,17

Suppose μ is a measure $1 and <math>f \in L^p$. Prove that for every $\epsilon > 0$, there exists simple function g such that $||f - g||_p < \epsilon$.

Proof. Assume first $1 \le p < \infty$. First we consider positive f. By 2.89, we can find a sequence of simple function $f_n \leq f$ and f_n converges to f pointwisely. Thus by dominate convergence theorem,

$$\lim_{k \to \infty} \int |f_n - f|^p d\mu = \int \lim_{k \to \infty} |f_n - f|^p d\mu = 0.$$

Thus we can find the required function. For general f, we can work separately with its positive part and negative part.

For the case of $p = \infty$, we can use 2.89 directly.