## Problem 6E,5

Suppose

$$
X=\{0\} \bigcup \bigcup_{k=1}^{\infty}\left\{\frac{1}{k}\right\}
$$

and $d(x, y)=|x-y|$.

- Show that $(X, d)$ is a Banach space.
- Each set of the form $\{x\}$ is closed subset of $\mathbb{R}$ that has a nonempty interior as a subset of $\mathbb{R}$. Clearly $X$ is a countably union of such sets. Explain why this does not violates the Baire's theorem.

Proof. - This is easy to check.

- Note that each set of the form $\{x\}$ is closed subset of $\mathbb{R}$ and also closed subset of $X$. But if $x=\frac{1}{k}, k>0$, as a subset of $X$, it has $x$ as interior point.


## Problem 6E, 8

Suppose $(X, d)$ is a complete metric space and $G_{1}, G_{2}, \ldots$ is a sequence of open dense subsets of $X$. Prove that $\bigcap_{k=1}^{\infty} G_{k}$ is dense subset of $X$.

Proof. Let $U$ be a open subset of $X$ and we need to show that $\bigcap_{k=1}^{\infty} G_{k} \bigcap U$ is nonempty. Since $G_{1}$ is open dense, we can find $\bar{B}\left(f_{1}, r_{1}\right) \subset G_{1} \bigcap U, r_{1} \in(0,1)$. Now we can follow the proof of 6.76 (b) to find $f \in \bigcap_{k=1}^{\infty} G_{k}$, which shows that $\bigcap_{k=1}^{\infty} G_{k} \bigcap U$ is nonempty.

## Problem 6E,9

Prove that there dose not exists infinite-dimensional Banach space with a countable basis.
Proof. Otherwise, let $B$ be a Banach space with countable basis $b_{1}, b_{2}, \ldots$. Set

$$
B_{n}=\left\{b \in B \mid b \text { can be written as } \sum_{k=1}^{n} c_{k} b_{k},\left|c_{k}\right| \leq n\right\}
$$

Then $B_{n}$ is closed subset of $B$ and $B=\bigcup_{n=1}^{\infty} B_{n}$. Then we know that there exists some $n_{0}$ such that $B(f, r) \subset B_{n_{0}}$ for some $f \in B, r>0$. Thus $B(0, r)$ lies in some finite dimensional subspace and so is $B$, which is an obviously contradiction.

## Problem 6E,16

Suppose $V$ is a Banach space with norm $\|$.$\| and \phi: V \rightarrow F$ be a linear functional . Define another norm $\|\cdot\|_{\phi}$ on $V$ by

$$
\|f\|_{\phi}=\|f\|+|\phi(f)| .
$$

Prove that if $V$ is a Banach space with norm $\|\cdot\|_{\phi}$, then $\phi$ is continuous functional on $V$ with the original norm.

Proof. Consider the map $I:\left(V,\|\cdot\|_{\phi}\right) \rightarrow(V,\|\cdot\|)$ by sending $f$ to $f$. This is a one-one map between Banach space so by 6.83 this map has a bounded inverse. Then there exists some constant $C>1$ such that for any $f \in V$,

$$
\|f\|_{\phi} \leq C\|f\| .
$$

This shows $\phi$ is continuous functional on $V$ with the original norm.

## Problem 7A,5

Suppose $(X, S, \mu)$ is measure space and $1<p<\infty, f \in L^{p}(X), h \in L^{p^{\prime}}(X)$. Show tha equality holds in Holder inequality if and only if there exist nonnegative numbers $a, b$, not both 0 , such that for almost every $x$,

$$
a|f(x)|^{p}=b|h(x)|^{p^{\prime}}
$$

Proof. The "if" part is obviouly. If the equality holds, we only need to consider the special case $\|f\|_{p}=\|h\|_{p^{\prime}}=1$.Note that the equality case for Young's inequality in 7.8 is $a^{p}=b^{p^{\prime}}$. From the proof of 7.9 , we know that for almost every $x$,

$$
|f(x)|^{p}=|h(x)|^{p^{\prime}}
$$

The general case follows similarly.

## Problem 7A,7

Suppose $(X, S, \mu)$ is measure space and $f, h: X \rightarrow F$ are measurable function. Prove that if for positive $p, q, r, \frac{1}{p}+\frac{1}{q}=\frac{1}{r}$, then

$$
\|f h\|_{r} \leq\|f\|_{p}\|h\|_{q}
$$

Proof. Note that $\frac{r}{p}+\frac{r}{q}=1$ thus $\frac{p}{r}, \frac{q}{r}$ is conjugate. Then apply the Holder inequality to function $f^{r}, h^{r}$ gives the result.

## Problem 7A,11

Show that $\bigcap_{p>1} l^{p} \neq l^{1}$.
Proof. Note that $l^{1} \subset \bigcap_{p>1} l^{p}$. But conversely, look at $a=\left(\frac{1}{k}\right)_{k=1}^{\infty}$. Then $a \in \bigcap_{p>1} l^{p}-l^{1}$.

## Problem 7A,17

Suppose $\mu$ is a measure, $1<p \leq \infty$ and $f \in L^{p}$. Prove that for every $\epsilon>0$, there exists simple function $g$ such that $\|f-g\|_{p}<\epsilon$.

Proof. Assume first $1 \leq p<\infty$. First we consider positive $f$. By 2.89, we can find a sequence of simple function $f_{n} \leq f$ and $f_{n}$ converges to $f$ pointwisely. Thus by dominate convergence theorem,

$$
\lim _{k \rightarrow \infty} \int\left|f_{n}-f\right|^{p} d \mu=\int \lim _{k \rightarrow \infty}\left|f_{n}-f\right|^{p} d \mu=0
$$

Thus we can find the required function. For general $f$, we can work separately with its positive part and negative part.
For the case of $p=\infty$, we can use 2.89 directly.

